
ECE 604, Lecture 14

October 18, 2018

In this lecture, we will cover the following topics:

• Multi-Junction Transmission Lines

• Uniform Plane Waves

• Plane Waves in Lossy Conductive Media

Additional Reading:

• Lecture Notes 13.

• Sections 5.8, 5.9, 5.10, 6.1, and 6.2 Ramo, Whinnery, and Van Duzer.
(Reading of the textbook is for supplementary knowledge and not neces-
sary for doing the homework.)

Printed on October 24, 2018 at 11 : 10: W.C. Chew and D. Jiao.
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1 Multi-Junction Transmission Lines

By concatenating sections of transmission lines of different characteristic imped-
ances, a large variety of devices such as resonators, filters, radiators, and match-
ing networks can be formed. We will start with a single junction transmission
line.

1.1 Single-Junction Transmission Lines

Consider two transmission line connected at a single junction as shown in Figure
1. For simplicity, we assume that the transmission line to the right is infinitely
long so that there is no reflected wave. And that the two transmission lines
have different characteristic impedances, Z01 and Z02.

Figure 1:

The impedance of the transmission line at junction 1 looking to the right is

Zin2 = Z02 (1.1)

since no reflected wave exists. Transmission line 1 sees a load of ZL = Zin2 = Z02

hooked to its end. Hence, we deduce that the reflection coefficient at junction
1 between line 1 and line 2, using the knowledge from the previous lecture, is
Γ12, and is given by

Γ12 =
ZL − Z01

ZL + Z01
=
Zin2 − Z01

Zin2 + Z01
=
Z02 − Z01

Z02 + Z01
(1.2)

1.2 Two-Junction Transmission Lines

Now, we look at the two-junction case. To this end, we first look at when line
2 is terminated by a load ZL at its end as shown in Figure 2
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Figure 2:

Then, using the formula derived in the previous lecture,

Zin2 = Z02
1 + Γ(−l2)

1− Γ(−l2)
= Z02

1 + ΓL2e
−2jβ2l2

1− ΓL2e−2jβ2l2
(1.3)

where we have used the fact that Γ(−l2) = ΓL2e
−2jβ2l2 . It is to be noted that

here, using knowledge from the previous lecture, that

ΓL2 =
ZL − Z02

ZL − Z02
(1.4)

Now, line 1 sees a load of Zin2 hooked at its end. The generalized reflection
coefficient at junction 1, which includes all the reflection of waves from its right,
is now

Γ̃12 =
Zin2 − Z01

Zin2 + Z01
(1.5)

Substituting (1.3) into (1.5), we have

Γ̃12 =
Z02( 1+Γ

1−Γ )− Z01

Z02( 1+Γ
1−Γ ) + Z01

(1.6)

where Γ = ΓL2e
−2jβ2l2 . The above can be rearranged to give

Γ̃12 =
Z02(1 + Γ)− Z01(1− Γ)

Z02(1 + Γ) + Z01(1− Γ)
(1.7)

Finally, by further rearranging terms, it can be shown that the above becomes

Γ̃12 =
Γ12 + Γ

1 + Γ12Γ
=

Γ12 + ΓL2e
−2jβ2l2

1 + Γ12ΓL2e−2jβ2l2
(1.8)

where Γ12, the local reflection coefficient, is given by (1.2), and Γ = ΓL2e
−2jβ2l2

is the general reflection coefficient at z = −l2 due to the load ZL. In other
words,

ΓL2 =
ZL − Z02

ZL + Z02
(1.9)
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Equation (1.8) is a powerful formula for multi-junction transmission lines.
Imagine now that we add another section of transmission line as shown in Figure
3.

Figure 3:

We can use the aforementioned method to first find Γ̃23, the generalized
reflection coefficient at junction 2. Using formula (1.8), it is given by

Γ̃23 =
Γ23 + ΓL3e

−2jβ3l3

1 + Γ23ΓL3e−2jβ3l3
(1.10)

where ΓL3 is the load reflection coefficient due to the load ZL hooked to the end
of transmission line 3 as shown in Figure 3. Here, it is given as

ΓL3 =
ZL − Z03

ZL + Z03
(1.11)

Given the knowledge of Γ̃23, we can use (1.8) again to find the new Γ̃12 at
junction 1. It is now

Γ̃12 =
Γ12 + Γ̃23e

−2jβ2l2

1 + Γ12Γ̃23e−2jβ2l2
(1.12)

Therefore, we can use (1.8) recursively to find the generalized reflection coef-
ficient for a multi-junction transmission line. Once the reflection coefficient is
known, the impedance at that location can also be found. For instance, at
junction 1, the impedance is now given by

Zin2 = Z01
1 + Γ̃12

1− Γ̃12

(1.13)

instead of (1.3). In the above, Z01 is used because the generalized reflection
coefficient Γ̃12 is the total reflection coefficient for an incident wave from trans-
mission line 1 that is sent toward the junction 1. Previously, Z02 was used in
(1.3) because the reflection coefficients in that equation was for an incident wave
sent from transmission line 2.
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If the incident wave were to have come from line 2, then one can write Zin2

as

Zin2 = Z02
1 + Γ̃23e

−2jβ2l2

1− Γ̃23e−2jβ2l2
(1.14)

With some algebraic manipulation, it can be shown that (1.13) are (1.14) iden-
tical. But (1.13) is closer to an experimental scenario where one measures the
reflection coefficient by sending a wave from line 1 with no knowledge of what
is to the right of junction 1.

2 Uniform Plane Waves

By first writing the first two Maxwell’s equations in the frequency domain in a
source-free medium, namely,

∇×E = −jωµH (2.1)

∇×H = jωεE (2.2)

and taking the curl of the first equation, and then substituting the second equa-
tion to its right-hand side, we have the vector Helmholtz equation for a source-
free homogenous medium as given by

∇×∇×E− ω2µεE = 0 (2.3)

Taking the divergence of the above equation, we have

∇ · (∇×∇×E)− ω2µε∇ ·E = 0 (2.4)

Since the first term is zero become ∇·(∇×A) = 0, and if ω 6= 0, then ∇·E = 0.
Hence, the solution to (2.3) is consistent with ∇·E = 0 when ω 6= 0. Therefore,
using the fact that ∇×∇×E = ∇∇ ·E−∇ · ∇E, one can see that the above
equation is equivalent to solving

∇2E + ω2µεE = 0 (2.5)

if ∇ ·E = 0.
The general solution to (2.5) is hence

E = E0e
−jkxx−jkyy−jkzz = E0e

−jk·r (2.6)

where k = x̂kx + ŷky + ẑkz, r = x̂x+ ŷy+ ẑz. And upon substituting (2.6) into
(2.5), it is seen that

k2
x + k2

y + k2
z = ω2µε (2.7)

This is called the dispersion relation for a plane wave.
In general, kx, ky, and kz can be arbitrary as long as this relation is satisfied.

To simplify the discussion, we will focus on the case where kx, ky, and kz are
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all real. When this is the case, the vector function represents a uniform plane
wave propagating in the k direction. As can be seen, when k · r = constant,
it is represented by all points of r that represents a flat plane. This flat plane
represents the constant phase wave front. By increasing the constant, we obtain
different planes for progressively changing phase fronts.1

Figure 4:

Further, since ∇ ·E = 0, we have

∇ ·E = ∇ ·E0e
−jkxx−jkyy−jkzz = ∇ ·E0e

−jk·r

= (−x̂jkx − ŷjky − ẑjkz) ·Ee−jk·r

= −j(x̂kx + ŷky + ẑkz) ·Ee−jk = 0 (2.8)

or

k ·E0 = k ·E = 0 (2.9)

Thus, E is orthogonal to k for a uniform plane wave.
The above exercise shows that whenever E is a plane wave, and when the ∇

operator operates on such a vector function, one can do the substitution that
∇ → −jk.

Hence, in a source-free homogenous medium,

∇×E = −jωµH (2.10)

the above equation becomes

−jk×E = −jωµH (2.11)

1In the exp(jωt) time convention, this phase front is decreasing, whereas in the exp(−iωt)
time convention, this phase front is increasing.
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or that

H =
k×E

ωµ
(2.12)

Also, from

∇×H = jωεE (2.13)

we get that

E = −k×H

ωε
= −k× (k×E)

ω2µε
(2.14)

Again, using the vector identity, the above simplifies to

E = −k(k ·E)− (k · k)E

ω2µε
=

k · k
ω2µε

E (2.15)

where k · E = 0 has been used. For the above equation to be consistent, it is
necessary that

k · k = k2
x + k2

y + k2
z = ω2µε (2.16)

or that k has to satisfy the dispersion relation previously derived in (2.7).

Figure 5:

Figure 5 shows that k · E = 0, and that k× E points in the direction of H
as shown in (2.12). Figure 5 also shows, as k, E, and H are orthogonal to each
other. Hence, taking the magnitude of (2.12), then

|H| = |k||E|
ωµ

=

√
ε

µ
|E| = 1

η
|E| (2.17)
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where the quantity

η =

√
µ

ε
(2.18)

is call the intrinsic impedance. For vacuum or free-space, it is about 377Ω. It
is also noted that E ×H∗ points in the direction of the vector k. This is also
required by the Poynting’s theorem.

In the above, when kx, ky, and kz are not all real, the wave is known as an
inhomogeneous wave.2

3 Plane Waves in Lossy Conductive Media

The above can be generalized to a lossy conductive medium by invoking math-
ematical homomorphism. When conductive loss is present, σ 6= 0, and J = σE.
Then generalized Ampere’s law becomes

∇×H = jωεE + σE = jω

(
ε+

σ

jω

)
E (3.1)

A complex permittivity can be defined as ε˜= ε−j σω . Eq. (3.1) can be rewritten
as

∇×H = jωε˜E (3.2)

This equation is of the same form as (2.2). Using the same method as before,
a plane-wave solution E = E0e

−jk·r will have the dispersion relation which is
now given by

k2
y + k2

y + k2
z = ω2µε˜ (3.3)

Since ε˜ is complex now, kx, ky, and kz need not be all real. Equation (2.17)
is derived by assuming that k is a real vector. When k is a complex vector,
the derivation that leads to (2.17) may not be correct. It is also difficult to
visualize a k vector that the wave is propagating in. So again, we can look at
the simplified case where

E = x̂Ex(z) (3.4)

so that ∇ ·E = ∂xEx(z) = 0, And let k = ẑk = ẑω
√
µε˜. In this manner, we are

requiring that the wave decays only in the z direction. For such a simple plane
wave,

E = x̂Ex(z) = x̂E0e
−jkz (3.5)

2The term inhomogeneous plane wave is used sometimes, but it is a misnomer since there
is no more a planar wave front in this case.
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where k = ω
√
µε˜, since k · k = k2 = ω2µε˜ is still true.

Then (2.12) gives rise to

H = ŷ
kEx(z)

ωµ
= ŷ

√
ε

µ̃
Ex (3.6)

or by letting k = ω
√
µε˜, then

Ex/Hy =

√
µ

ε˜ (3.7)

When the medium is highly conductive, σ →∞,

k = ω
√
µε˜' ω

√
−µjσ

ω
=
√
−jωµσ (3.8)

Taking
√
−j = 1√

2
(1− j), we have

k = (1− j)
√
ωµσ

2
= k′ − jk′′ (3.9)

For a plane wave, e−jkz, it becomes

e−jkz = e−jk
′z−k′′z (3.10)

This plane wave decays exponentially in the z direction. The penetration depth
of this wave is then

δ =
1

k′′
=

√
2

ωµσ
(3.11)

this distance δ, the penetration depth, is called the skin depth of a plane wave
propagating in a highly lossy conductive medium. This happens for radio wave
propagating in the saline solution of the ocean, the earth, or wave propagating
in highly conductive metal.

When the conductivity is low, then σ
ωε � 1, we have

k = ω

√
µ
(
ε− j σ

ω

)
= ω

√
µε

(
1− jσ

ωε

)
≈ ω√µε

(
1− j 1

2

σ

ωε

)
= k′ − jk′′ (3.12)

The term σ
ωε is called the loss tangent of a lossy medium.

In general, in a lossy medium ε = ε′− jε′′, ε′′/ε′ is called the loss tangent of
the medium. It is to be noted that in the optics and physics community, e−iωt

time convention is preferred. In that case, we need to do the switch j → −i,
and a loss medium is denoted by ε = ε′ + iε′′.
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